Los deepfakes no dejan de evolucionar, son cada vez son más complicados de detectar, yse están transformando en una nueva fuente para fake news y fraudes
19.11.2022 • 08:36hs • Ciberseguridad
Ciberseguridad
Qué es FakeCatcher, y cómo te ayudará a estar más seguro en internet
Como parte de su trabajo en responsabilidad sobre inteligencia artificial, Intel elaboró el producto FakeCatcher, una tecnología que puede detectar videos deepfake con una tasa de precisión del 96%.
Se trata del primer detector de videos falsificados a través de inteligencia artificial que devuelve resultados en tan solo milisegundos.
"Los videos deepfake están en todas partes ahora. Probablemente ya los hayan visto; videos de celebridades haciendo o diciendo cosas que en realidad nunca hicieron", explicó Ilke Demir, senior staff research scientist en Intel Labs.
Cómo funciona FakeCatcher
La plataforma en tiempo real de Intel utiliza FakeCatcher, un detector diseñado por Demir en colaboración con Umur Ciftci de la Universidad Estatal de Nueva York en Binghamton. Utilizando hardware y software de Intel, se ejecuta en un servidor e interactúa a través de una plataforma basada en la web. Por el lado del software, una orquesta de herramientas especializadas forman la arquitectura optimizada de FakeCatcher. Los equipos usaron OpenVino™ para ejecutar modelos de IA para algoritmos de detección de rostros y puntos de referencia.
Los bloques de visión por computadora se optimizaron con Intel® Integrated Performance Primitives (una biblioteca de software de subprocesos múltiples) y OpenCV (un conjunto de herramientas para procesar imágenes y videos en tiempo real), mientras que los bloques de inferencia se optimizaron con Intel® Deep Learning Boost y con Intel® Advanced Vector Extensions 512 y los bloques de medios se optimizaron con Intel® Advanced Vector Extensions 2. Los equipos también se apoyaron en el proyecto Open Visual Cloud para proporcionar una pila de software integrada para la familia de procesadores escalables Intel® Xeon®. En cuanto al hardware, la plataforma de detección en tiempo real puede ejecutar hasta 72 flujos de detección diferentes simultáneamente en procesadores escalables Intel® Xeon® de tercera generación.
La mayoría de los detectores basados en el aprendizaje profundo analizan los datos sin procesar para tratar de encontrar signos de falta de autenticidad e identificar lo que está mal en un video. Por el contrario, FakeCatcher busca pistas auténticas en videos reales, evaluando lo que nos hace humanos: un "flujo de sangre" sutil en los píxeles de un video. Cuando nuestro corazón bombea sangre, nuestras venas cambian de color. Estas señales de flujo sanguíneo se recopilan de todo el rostro y los algoritmos traducen estas señales en mapas espaciotemporales. Luego, utilizando el aprendizaje profundo, podemos detectar instantáneamente si un video es real o falso.
Cuál es la relevancia de FakeCatcher
Los videos falsos son una amenaza creciente. Las empresas gastarán hasta $ 188 mil millones en soluciones de ciberseguridad, según Gartner. También es difícil detectar estos videos falsos en tiempo real: las aplicaciones de detección requieren cargar videos para analizarlos y luego esperar horas para obtener resultados.
El engaño debido a las falsificaciones profundas puede causar daño y tener consecuencias negativas, como la disminución de la confianza en los medios. FakeCatcher ayuda a restaurar la confianza al permitir que los usuarios distingan entre contenido real y falso.
Hay varios casos de uso potenciales para FakeCatcher. Las plataformas de redes sociales podrían aprovechar la tecnología para evitar que los usuarios carguen videos falsos dañinos. Las organizaciones de noticias globales podrían usar el detector para evitar la amplificación involuntaria de videos manipulados. Y las organizaciones sin fines de lucro podrían emplear la plataforma para democratizar la detección de deepfakes para todos.